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EXTENDED ABSTRACT 
Background 

Over a period of years it has been recognized that  the classical test approach of using 
only a motion controlled envelope of input acceleration levels may  be too conservative, and 
may  induce  excessive  vibration  responses  at  equipment  resonant  frequencies. This problem  has 
been recognized in the literature for some time, and with its identification have emerged 
proposals for alternative vibration control techniques. Of these techniques, the force limiting 
approach has shown the most promise and consequently, has been the subject of the most 
recent developmental work. In particular, the so called dual control method, which involves 
limiting force levels as  well  as acceleration levels at  the  input to the test article, has been  very 
successfully used in  the test laboratory to ameliorate overtest conditions on a wide variety  of 
hardware. This technique, first proposed explicitly by Murfin in 1968 and more recently 
developed by Smallwood  (1990)  and Scharton (1994, 1995),  forms  the current state of the  art. 

In  the  most recent formulation of  the force-limiting problem, the source-load  vibratory 
system is modeled according to the modal- and residual-mass (MRM) two-degree-of-freedom 
(2DOF) system. In this model, the source and load are not idealized as lumped masses but 
instead they are treated, more realistically, as distributed masses. For a given mode in such a 
multi-degree-of-freedom  (MDOF) system, there is an effective modal  mass  that participates in 
the motion, and a complementary, effective residual mass  that  does not. At a given  mode both 
the source and  load distributed masses can be  modeled  as  discrete effective modal  and  residual 
masses connected at  the interface, as  shown  in Fig. 1. 
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Figure 1. Modal- and Residual-Mass 2DOF Source-Vibratory System 



In force-limiting specifications developed according to the so called frequency-shift method, 
the shaker is limited to deliver a peak interface force equal to the product of the acceleration 
spectral envelope and the frequency-shifted  values of the load dynamic mass evaluated at  the 
system resonantfrequencies. The load dynamic mass, in general a complex quantity, is a 
frequency  response function defined  as  the force acting on the load  divided by its acceleration. 
Analytically,  this  may  be  expressed  as 

and 

for deterministic and random excitations, respectively; the symbol S denotes power spectral 
density  (PSD)  of a random  process.  Both  conventional  and  force-limited  vibration  testing  using 
the frequency-shift technique assume that the control acceleration spectrum la,(m) I properly 
envelopes  the  interface  accelerations la(m) l p e u k  seen  in service. The resulting  expression  for  the 
load dynamic mass evaluated at the system resonances for this MRM 2DOF system are then 
used  to develop the  force limits. This limiting technique can accomplish a significant  reduction 
in  the  interface force, thereby  considerably  reducing  responses  at  equipment  resonances. 

New Development 
Clearly, nonlinear stiffness and damping effects can commonly occur under normal 

service conditions. Various materials, some metallic springs for example, obey Hooke’s law 
for small displacements; however, at larger displacements significant departures from linear 
behavior can occur. Furthermore, it  is a well known characteristic of metals  under  high strains 
to move from linear to nonlinear elastic behavior and then to nonlinear plastic behavior. 
Various non-metals, some  rubber compounds for example, exhibit distinctly nonlinear elastic 
behavior even under low strains. Likewise, many structural materials can exhibit highly 
nonlinear damping behavior, particularly when loaded under high stresses outside of their 
elastic range. In such cases, energy loss mechanisms such as plastic slip, localized plastic 
strain, crystal plasticity, cyclic plastic flow, or cyclic deformation predominate. For these 
materials, the  damping  term in the force law becomes nonlinear and the corresponding 
hysteresis loop is  nonelliptical. 

Incorporating both stiffness and damping nonlinearities into force-limited, random 
vibration test specifications is attempted in this paper. For this purpose, the technique of 
statistical linearization is used  in conjunction with the frequency shift method in the MRM 
2DOF system to derive force-limiting specifications for  a nonlinear load mass  modeled  as a 
Duffing, Rayleigh damped, and linear plus quadratically damped oscillators, respectively. 
Generally, statistical linearization is more robust over a wider range of nonlinearities than 
traditional  perturbation  methods, and is simpler  to apply than Wiener-Volterra  series 
expansions. The equations of  motion for a nonlinear MDOF vibratory system can be  written 
most  generally  in  matrix  form  as 

M X + C X + K X + 0 (x ,X ,X)  = f ,  

where M is the system mass matrix, C is the system damping matrix, K is  the  system 
stiffness matrix, x is the  system displacement vector, f is the system force vector, and 0 is a 
vector function containing the system nonlinearities. The crux of the statistical linearization 
technique  lies  in  reformulating  the  nonlinear system as the  equivalent  linear  system 



(M+M,) X + (C+C,) X + (K+K,) X = f ,  

where the linearizing matrices M e ,  Ce,  and Ke are chosen to minimize a suitable error 
criteria. If the response is approximated as Gaussian, it can be  shown that the optimal choices 
for the  matrices'  linearization  are  given  by  the  expression 

= E  

where mei , ~ e i ,  and kei are  the  ith rows of the matrices Me, Ce, and Ke , respectively;  and 
E denotes  the  mathematical  expectation  operator. A thorough  treatment  of  this  technique  can  be 
found in Roberts and Spanos (1990). 

The normalized force-limiting specification for each nonlinear system considered is 
determined  for  a  range of nonlinear  stiffness  and  damping  coefficients  and is compared  with its 
linear counterpart over the same range of effective mass parameters. A representative, plot for 
the  Duffing  load  oscillator  in  the  MRM  2DOF  model  is  displayed  in  Fig.  2. 

Maximum Force Limiting Specification for the Duffing (Hardening) Load  Oscillator 
a1 = a2 = .25 
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Figure 2. Force  Limiting Specification for the Duffing  Load Oscillator 
a1 = a2 =.25 
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Similar  results for the  Rayleigh  damped  load  oscillator  in  the  MRM 2DOF model are displayed 
in Fig. 3. 
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Figure 3. Force Limiting Specification for the Rayleigh Load Oscillator 
a1 = a2 = .25 

For each graph, families of curves show the normalized force limit PSD 

plotted  as a function of the  residual  mass ratio ( p )  for selected  values of the  damping ( Cr ,  C2), 
source residual mass ratio (a]), load residual mass ratio (a2), and  the  normalized nonlinear 
stiffness  parameter (pd) or normalized  nonlinear  damping  parameter ( ~ C J ; ) .  Detailed 
definitions of  all  the parameters appearing in the preceeding figures will be given in  the full 
body of the  paper. 

It  is  hoped  that this paper  will establish a reasonable and  practical approach to account 
for  nonlinear  effects  in  equipment  where  force-limited  techniques  are  used  for  random  vibration 
testing. 
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